NMR Investigations of ¹⁷O, ³³S, ⁹⁵Mo, and ⁹⁷Mo in Thiomolybdates

P. Kroneck

Fakultät für Biologie der Universität Konstanz

and

O. Lutz and A. Nolle

Physikalisches Institut der Universität Tübingen

Z. Naturforsch. 35a, 226-229 (1980); received December 24, 1979

NMR investigations of ¹⁷O, ³³S, ⁹⁵Mo, and ⁹⁷Mo have been used to elucidate the existence and the behaviour of the oxothiomolybdate species, $MoO_{4-n}S_n^{2-}$ (n=0,1,2,3,4) in aqueous solution. Very large chemical shifts and surprisingly narrow lines have been found for these nuclei in the different species.

Introduction

In the thiomolybdates $\text{MoO}_{4-n} \text{S}_n^{2-}$ (n=0,1,2,3,4), four different nuclei can give rise to NMR signals: ^{17}O , ^{33}S , ^{95}Mo and ^{97}Mo . All of those are quadrupolar nuclei with relatively low NMR receptivity. The study of different nuclei in one single compound yields more information with respect to structure and ligand exchange. Second, experiments of this type can show the advantages and limits of the NMR signals of a certain nucleus in the compound investigated.

Most recently ⁹⁵Mo NMR was used to study simple and low molecular weight compounds [1 – 4], and it was possible to identify different molybdenum (VI) chalcogenide anions in aqueous solutions [5]. The rather narrow linewidth of the ⁹⁵Mo NMR signal in MoS₄²⁻ allowed measurements of the small ³²S-³⁴S isotope effect [6]. Because the quadrupole moment of ⁹⁷Mo is much larger than that of ⁹⁵Mo [1, 2, 7], ⁹⁷Mo NMR measurements will allow the acquisition of more reliable data about the natural linewidths and the quadrupole relaxation in the thiomolybdates.

Furthermore, it is known from time-dependent 95 Mo NMR experiments, that some of the thiomolybdates will decompose in aqueous solution, so that at last no 95 Mo signal or only that due to the $\mathrm{MoO_4}^{2-}$ species can be obtained. If one takes into account the rather small linewidths of $^{17}\mathrm{O}$ in $\mathrm{MoO_4}^{2-}$ of a few Hz [8-10] and the wide application range $^{17}\mathrm{O}$

Reprint requests to Prof. Dr. O. Lutz, Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle, D-7400 Tübingen. NMR has reached until now [11-16], it should perhaps be possible to get further information from ¹⁷O measurements of the thiomolybdates.

In analogy to the ¹⁷O NMR measurements, ³³S investigations are possible for the thiomolybdates, although ³³S NMR plays a rather unimportant role in chemistry [9, 17, 18], because the ³³S NMR signal is rather weak and in most cases broad signals seem to dominate.

Experimental

The NMR measurements of the nuclei $^{17}\mathrm{O}$, $^{33}\mathrm{S}$, $^{95}\mathrm{Mo}$ and $^{97}\mathrm{Mo}$ were performed at $(299\pm2)\,\mathrm{K}$ with a multinuclei Bruker pulse spectrometer SXP 4—100 in a magnetic field of 2.11 T, which was externally stabilized by a $^{1}\mathrm{H}\text{-NMR}$ stabilization unit. For the described investigations it was very essential, that within short times the NMR signals of the different nuclei could be observed in the same sample. Some data, which are important for these nuclei are given in Table 1. For the measurements non-rotating cylindrical samples with 10 mm outer diameter were used. The chemical shift is reported as $\delta = (\nu_{\mathrm{sample}}/\nu_{\mathrm{ref}}) - 1$, where the reference sample for the different nuclei is described in the text.

The molybdenum (VI) thiomolybdates were prepared as described earlier in the literature: (NH₄)₂MoO₂S₂ [20], K₃MoOS₃Cl [21], K₂MoS₄ [20]. The purity of the compounds prepared was carefully checked by comparison of the electronic and IR spectra with the values reported in [22]. Generally the molybdenum complexes were dissolved in water, which had been flushed by argon prior to the addition of the solid compound.

0340-4811 / 80 / 0200-0226 \$ 01.00/0. — Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Table 1. Important NMR parameters of the nuclei ¹⁷O, ³³S, ⁹⁵Mo and ⁹⁷Mo. The quadrupole moments are from Ref. [19], ¹⁷O and ³³S, and Ref. [7], ⁹⁵Mo and ⁹⁷Mo.

Nucleus	Natural abundance in %	Spin	Quadrupole moment in 10^{-28} m ²	Larmor frequency at 2.11 T	Solution	$\begin{array}{l} \text{Receptivity} \\ (\text{Proton} = 1) \end{array}$
17O a	0.037	5/2	- 0.026	12.20 MHz	0.25 M K ₂ MoO ₄ in H ₂ O	9.8 · 10-8
33S	0.76	3/2	-0.055	$6.91~\mathrm{MHz}$	0.25 M K ₂ MoS ₄ in H ₂ O	$1.6 \cdot 10^{-7}$
$^{95}\mathrm{Mo}$	15.72	5/2	-0.019	$5.87 \mathrm{\ MHz}$	1 M K ₂ MoO ₄ in H ₂ O	$4.6 \cdot 10^{-6}$
$^{97}\mathrm{Mo}$	9.60	5/2	0.102	$5.99~\mathrm{MHz}$	1 M K ₂ MoO ₄ in H ₂ O	$3.0\cdot 10^{-6}$

^a This signal was observed in a sample with 10% ¹⁷O.

Results and Discussion

Some chemical shift data of 95Mo in molybdates and thiomolybdates have been already reported earlier [3-5] and are summarized together with the new results in Table 2. There is an increase in the Larmor frequency of 95Mo of about 500 to 600 ppm if one oxygen atom is substituted by a sulfur ligand in the thiomolybdates. The linewidths of the 95Mo signals are relatively small and might still be falsified by magnetic field inhomogeneities. Therefore we used the NMR signal of 97Mo, which has a quadrupole moment 11 times stronger than that of ⁹⁵Mo. If quadrupole interaction is an essential relaxation mechanism for the molybdates and thiomolybdates [1, 2], the ⁹⁷Mo NMR signals must be much broader than the 95Mo signals, and for these linewidths the magnetic field inhomogeneity plays only a minor role. The observed chemical shifts and linewidths for ⁹⁷Mo are also collected in Table 2.

The results of the chemical shift agree well for both molybdenum isotopes. The linewidths of the 97Mo signals are indeed much broader than for 95Mo. In the case of the MoO₃S²⁻ species the signal linewidth must be extremely broadened, thus no signal could be observed for this compound. But this fact is already indicated by the linewidth of 95Mo in this monothiomolybdate, from which a linewidth of about 1 kHz for ⁹⁷Mo can be predicted. Such a broad signal can only be detected with extreme difficulties because 1) of the low sensitivity of the ⁹⁷Mo signal, and 2), because of the low concentration of the samples studied. The quadrupole interaction in MoS₄²⁻ seems to be smaller than in the tetra-oxospecies MoO₄²⁻. This is somewhat surprising, but it allowed us to observe the rather small 32S-34S isotope effect of the 95Mo NMR signal in MoS₄2-[6]. Because some of the thiomolybdate samples are partially unstable in solution, NMR investigations of 95Mo and 97Mo are rather useful for recording the

Table 2. Chemical shift and linewidth data of 95 Mo and 97 Mo in the thiomolybdates: $MoO_{4-n}S_n^{2-}$ (n=0, 1, 2, 3, 4) in H_2O relative to the molybdate ion MoO_4^{2-} at infinite dilution in H_2O .

Aqueous	Compound	$^{95}\mathrm{Mo}$		$^{97}\mathrm{Mo}$	
solution of		Chemical shift in ppm	Linewidths a in Hz	Chemical shift in ppm	Linewidths in Hz
K ₂ MoO ₄ , infinitely dilute	$\mathrm{MoO_4^{2-}}$	0	0.5	0	35
$(NH_4)_2MoO_2S_2$, 0.5 molal	$\mathrm{MoO_{3}S^{2-}}$	497(1)	10	-	-
$(NH_4)_2MoO_2S_2$, 0.5 molal	$MoO_2S_2^{2-}$	1067(1)	2.8	1064(2)	85
K ₃ MoOS ₃ Cl, 0.4 molal	$\mathrm{MoO_3S^{2-}}$	1654(1)	0.7	1651(2)	35
K_2MoS_4 , $0.5 molal$	$ m MoS_4^{2-}$	2259(1)	0.3	2259(2)	25

a For rotating samples.

actual state of the sample. This is very favorable if the residual nuclei of these compounds could be also observed and assigned to the different species. We also detected the NMR signal of ¹⁷O in an approx. 1 molal solution of (NH₄)₂MoO₂S₂ in H₂O, which was enriched in ¹⁷O to about 10%. A small amount of ammonia was added to get a slower decomposition of the sample. In addition to the very strong ¹⁷O signal of the solvent three signals could be observed for the several thiomolybdates in a freshly prepared sample (Table 3). At the same time, for this sample, four 95Mo signals were observed due to the different species $MoO_{4-n}S_n^{2-}$, n = 0, 1, 2, 3. Comparing the time dependence of the ¹⁷O and ⁹⁵Mo signals over a few hours, the different 17O signals could be assigned to the $MoO_{4-n}S_n^{2-}$, n=0, 1, 2 ions. Only for the thiomolybdate MoOS₃²⁻ ion no ¹⁷O signal was detectable, although this ion was also present in the solution as demonstrated by the corresponding 95Mo species. It is quite clear, that the 17O signal of MoOS₃²⁻ is difficult to observe because for the same number of each thiomolybdate species the signal of the MoO₂S₂²⁻ ion is two and that of the MoO₄²⁻ ion is four times stronger than the signal in the MoOS₃²⁻. Furthermore, due to the decomposition of the sample the intensity of the 95Mo signal of MoO₂S₂²⁻ and MoOS₃²⁻ decrease, so that after one day only a ⁹⁵Mo signal of MoO₄²⁻ and a very weak signal of MoO₂S²⁻ is left. A few hours after the preparation of the sample new ¹⁷O signals could be observed, which increased with time. For these signals no corresponding 95Mo signals could be detected. Most likely these new signals stem from some polymolybdates formed in solution, which are known to yield rather broad signals.

We did not try to assign these ¹⁷O signals because at present only a few data are available on the

Table 3. Chemical shift and linewidth data of 17 O in the oxothiomolybdates $MoO_{4-n}S_n^{2-}$ (n=0,1,2), which occur in a solution of $(NH_4)_2MoO_2S_2$ in H_2O (10% enriched in 17 O).

Compound	Chemical shift in ppm	Linewidth in Hz	
H ₂ O	0	85	
MoO_4^{2-}	532(3)	114	
MoO_3S^{2-}	595(3)	80	
$MoO_2S_2^{2-}$	646(2)	70	

decomposition of $MoO_{4^{-n}}S_4^{2^-}$ in solution. The signal of ^{17}O in the $MoO_4^{2^-}$ ion in this solution is rather broad compared with the linewidth in a pure molybdate solution of a few Hz. The other linewidths of the thiomolybdates are comparable in magnitude to the water signal. As already observed for the ^{95}Mo and ^{97}Mo signals, there is a nearly constant change in chemical shift in the ^{17}O signals if an oxygen atom is substituted by a sulfur atom. The chemical shift of ^{17}O is about one order of magnitude smaller than that of the ^{95}Mo signal. The chemical shift of ^{17}O between $SO_4^{2^-}$ and $S_2O_3^{2^-}$ is nearly the same as that measured between different thiomolybdates [9].

It is known, that the 95 Mo NMR linewidth is rather small in $\mathrm{MoO_4}^{2^-}$ and also in $\mathrm{MoS_4}^{2^-}$ [1 – 6], it is further known, that the 17 O linewidth in $\mathrm{MoO_4}^{2^-}$ is also very small [8 – 10]. Consequently the NMR linewidth of 33 S in $\mathrm{MoS_4}^{2^-}$ should not be too broad, as illustrated in Fig. 1 for a 0.1 molal (NH₄) $_2$ MoS₄ solution. The chemical shift of this signal is 343 (2) ppm to higher frequency relative to a 4 molal Cs $_2$ SO₄ solution, the linewidth of a nonrotating sample was about 40 Hz. For the other thiomolybdates no 33 S NMR signals could be found. The signal, which we earlier assigned to the $\mathrm{MoS_4}^{2^-}$ ion seems identical to a signal observed for the $\mathrm{S_2O_3}^{2^-}$ ion [9]. This could also be shown by an 17 O NMR measurement in a corresponding solution of $\mathrm{MoS_4}^{2^-}$.

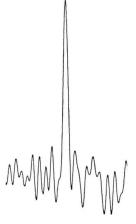


Fig. 1. 33 S NMR signal of a 0.1 molal solution of (NH₄)₂MoS₄ in H₂O in a nonrotating sample of 1.5 ml volume with a linewidth of 40 Hz. Experimental spectrum width: 20 kHz, number of pulses 108 000, measuring time 15 h, 1 k data points were accumulated, followed by 15 k points of zero-filling before Fourier transformation of 16 k data points.

By these experiments we were able to demonstrate, that in addition to 95Mo NMR spectroscopy molybdates and thiomolybdate can be investigated by application of ⁹⁷Mo, ¹⁷O and ³³S FT-NMR. Especially from the linewith of 97Mo one obtains much more reliable data on the quadrupole relaxation in the thiomolybdates, whereas the chemical shifts remain the same. On the other hand, it is easier to detect 95Mo NMR signals than 97Mo signals, if the quadrupole relaxation can not be neglected. 17O signals could show, that beside the $MoO_{4-n}S_n^{2-}$ (n=0,1,2,3, 4) compounds other decomposition products must exist in aqueous solution, which have not been indenti-

fied until now, and which were not detected by 95Mo and 97Mo NMR. Finally, similarly to the situation in MoO₄²⁻ which gives very narrow ¹⁷O and ⁹⁵Mo NMR linewidth, the sharp ³³S and ⁹⁵Mo signals of MoS₄²⁻ indicate a symmetric electric field at the molybdenum and sulfur nucleus.

Acknowledgement

We thank Prof. H. Krüger for his support of this work and the Deutsche Forschungsgemeinschaft for their financial support.

- [1] R. R. Vold and R. L. Vold, J. Magn. Res. 19, 365
- [2] J. Kaufmann, J. Kronenbitter, and A. Schwenk, Z. Physik A 274, 87 (1975).
- [3] W. D. Kautt, H. Krüger, O. Lutz, H. Maier, and A. Nolle, Z. Naturforsch. 31a, 351 (1976).
- [4] O. Lutz, A. Nolle, and P. Kroneck, Z. Naturforsch. 31 a, 454 (1976).
- O. Lutz, A. Nolle, and P. Kroneck, Z. Naturforsch. 32a, 505 (1977).
- [6] O. Lutz, A. Nolle, and P. Kroneck, Z. Physik A 282, 157 (1977).
- [7] S. Büttgenbach, M. Herschel, G. Meisel, E. Schrödl, W. Witte, and W. J. Childs, Z. Physik 266, 271 (1974).
- [8] R. R. Vold and R. L. Vold, J. Chem. Phys. 61, 4360
- O. Lutz, W. Nepple, and A. Nolle, Z. Naturforsch. 31a, 978 (1976).
- O. Lutz, W. Nepple, and A. Nolle, Z. Naturforsch. 31a, 1046 (1976).
- [11] W. G. Klemperer, Angew. Chem. 90, 258 (1978).

- [12] M. Filowitz, W. G. Klemperer, L. Messerle, and W. Shum, J. Amer. Chem. Soc. 98, 2345 (1976).
- [13] W. G. Klemperer and W. Shum, J. Amer. Chem. Soc. 98, 8291 (1976).
- V. W. Day, M. F. Fredich, W. G. Klemperer, W. Shum, J. Amer. Chem. Soc. 99, 952 (1977).
- [15] M. Filowitz and W. G. Klemperer, Chem. Comm. 76,
- [16] M. Filowitz and W. G. Klemperer, Chem. Comm. 77,
- [17] H. L. Retcofsky and R. A. Friedel, J. Amer. Chem. Soc. 94, 6579 (1972).
- [18] O. Lutz, A. Nolle, and A. Schwenk, Z. Naturforsch. 28a, 1370 (1973).
- [19] G. H. Fuller, Phys. Ref. Chem. Data 5, 835 (1976).
- [20] G. Krüss, Justus Liebigs Ann. Chem. 225, 6 (1884).
 [21] A. Müller, H. Schulze, W. Sievert, and N. Weinstock, Z. anorg. allg. Chem. 403, 310 (1974).
- [22] E. Diemann and A. Müller, Coord. Chem. Rev. 10, 79 (1973).